menu

Publications

Papers List

2023

[5] Comprehensive analysis of drug loading into engineered lipoprotein nanoparticles toward their eye drop application
Fukuda, R.; Shima, R.; Shibukawa, S.; Murakmai, T.
ACS Appl. Bio Mater. 2023, in press.
DOI: 10.1021/acsabm.3c01003

[4] Effects of lipoprotein nanoparticles' composition and size on their internalization in plant and mammalian cells
Fukuda, R.; Tani, M.; Shibukawa, S.; Nobeyama, T.; Nomura, T.; Kato, Y.; Murakmai, T.
Genes Cells 2023, 28, 881–892.
DOI: 10.1111/gtc.13075
Shareable link

[3] Synthesis of butterfly-like shaped gold nanomaterial: for the regulation of liquid-liquid phase-separeted biomacromolecule droplets

Nobeyama, T.; Takata, K.; Mori, M.; Murakami T.; Yamada, Y.; Shiraki, K.
Small 2023, 202300362.
DOI: 10.1002/smll.202300362

[2] High-density lipoprotein engineering for eye-drop treatment of age-related macular degeneration
Fukuda, R.; Mahmuda, N.; Kasirawat, S.; Kawakami, R.; Shima, R.; Mizukami, Y.; Shibukawa, S.; Tada, Y.; Kawanishi, F.; Ogura, M.; Matsuki, K.; Nagai, Y.; Nakano, E.; Suda, K.; Tsujikawa, A.;, and Murakami, T.
Adv. Therap. 2023, 2300186.
DOI: 10.1002/adtp.202300186

[1] ペプチド会合体のDDS
村上達也、澁川しおり
新規モダリティ医薬品のための新しいDDS技術と製剤化, 第6章 注目されるDDS技術, キャリアの設計, 第9節 pp.333–341.
https://www.gijutu.co.jp/doc/b_2187.htm

2022

[1] 加齢黄斑変性治療標的としての高密度リポタンパク質
村上達也
別冊BIO Clinica. 2022, 11, 92–96.
https://jglobal.jst.go.jp/detail?JGLOBAL_ID=202202241269102926

2020

[5] Elucidation of the mechanisms for the underlying depolarization and reversibility by photoactive molecule
Numata, T.; Fukuda, R.; Hirano, M.; Yamaguchi, K.; Sato-Numata, H.; Imahori, H.; Murakami, T.
Cell. Physiol. Biochem. 2020, 54, 899–916.
DOI: 10.33594/000000277


[4] Control of lipid bilayer phases of cell-sized liposomes by surface-engineered plasmonic nanoparticles
Nobeyama, T.; Shigyou, K.; Nakatsuji, H.; Sugiyama, H.; Komura, N.; Ando, H.; Hamada, T.; Murakami, T.
Langmuir 2020, 36, 7741–7746.
DOI: 10.1021/acs.langmuir.0c00049

[3] Sustained photodynamic effect of single chirality-enriched single-walled carbon nanotubes
Fukuda, R.; Umeyama, T.; Tsujimoto, M.; Ishidate, F.; Tanaka, T.; Kataura, H.; Imahori, H.; Murakami, T.
Carbon 2020, 161, 718–725.
DOI:10.1016/j.carbon.2020.02.002


[2] Potential of lipoprotein-based nanoparticulate formulations for the treatment of eye diseases
Fukuda, R.; Murakami, T.
Biol. Pharm. Bull. 2020, 43, 596–607.
DOI: 10.1248/bpb.b19-00858

[1] Urea-assisted reconstitution of discoidal high-density lipoprotein
Fukuda, R.; Saito, M.; Shibukawa, S.; Sumino, A.; Nakano, M.; Murakami, T.
Biochemistry 2020, 59, 1455–1464.
DOI: 10.1021/acs.biochem.0c00075

2019

[2] Membrane fusogenic high-density lipoprotein nanoparticles
Kim, H.; Nobeyama, T.; Honda, S.; Yasuda, K.; Morone, N.; and Murakami, T.
Biochem. Biophys. Acta - Biomembrane 2019, 1861, 183008.
DOI: 10.1016/j.bbamem.2019.06.007

[1] Effects of the peripheral substituents, central metal, and solvent on the photochemical and photophysical properties of 5,15-diazaporphyrins
Omomo, S.; Fukuda, R.; Miura, T.; Murakami, T.; Ikoma, T.; Matano, Y.
ChemPlusChem 2019, 84, 1–7.
DOI: 10.1002/cplu.201900087

2018

[1] Colloidal stability of lipid/protein-coated nanomaterials in salt and sucrose solutions
Nobeyama, T.; Mori, M.; Shigyou, K.; Takata, K.; Pandian, G.N.; Sugiyama, H.; Murakami, T.
ChemistrySelect 2018, 3, 8325–8331.
DOI: 10.1002/slct.201801180


2017

[6] High-density lipoprotein eye drops for the treatment of posterior eye diseases
Suda, K.; Murakami, T.; Gotoh, N.; Fukuda, R.; Hashida, Y.; Hashida, M.; Tsujikawa, A.; Yoshimura, N.
J. Controlled Release 2017, 266, 301–309.
DOI: 10.1016/j.jconrel.2017.09.036

[5] DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy
Yata, T.; Takahashi, Y.; Tan, M.; Nakatsuji, H.; Ohtsuki, S.; Murakami, T.; Imahori, H.; Umeki, Y.; Shiomi, T.; Takakura, Y.; Nishikawa, M.
Biomaterials 2017, 146, 136–145.
DOI: 10.1016/j.biomaterials.2017.09.014

[4] Surface chemistry for cytosolic gene delivery and photothermal transgene expression by gold nanorods
Nakatsuji, H.; Galbraith, K. K.; Kurisu, J.; Imahori, H.; Murakami, T.; Kengaku, M.
Sci. Rep. 2017, 7, 4694.
DOI: 10.1038/s41598-017-04912-1

[3] Photodynamic action of single-walled carbon nanotube
Murakami, T.
Chem. Pharm. Bull. 2017, 65, 629–636.
DOI: 10.1248/cpb.c17-00120

[2] Strategy to attain remarkably high photinduced charge-separation yield of donor-acceptor linked molecules in biological environment via modulating their cationic moieties
Cai, N.; Numata, T.; Inoue, R.; Mori, Y.; Murakami, T.; Imahori, H.
J. Phys. Chem. C 2017, 121, 17457–17465.
DOI: 10.1021/acs.jpcc.7b04466

[1] Hexaphyrin as a potential theranostic dye for photothermal therapy and 19F magnetic resonance imaging
Higashino, T.; Nakatsuji, H.; Fukuda, R.; Okamoto, H.; Imai, H.; Matsuda, T.; Tochio, H.; Shirakawa, M.; Tkachenko, N. V.; Hashida, M.; Murakami, T.; Imahori, H.
ChemBioChem 2017, 18, 951–959.
DOI: 10.1002/cbic.201700071

2016

[4] 光を使って神経細胞の“痛み”感知を制御する
村上 達也
医学のあゆみ 2016, 258, 1210–1211.5
DOI: 10.1002/anie.201505534

[3] Optical control of neuronal firing via photoinduced electron transfer in donor-acceptor conjugates

Takano, Y.; Numata, T.; Fujishima, K.; Miyake, K.; Nakao, K.; Grove, W. D.; Inoue, R.; Kengaku, M.; Sakaki, S.; Mori, Y.; Murakami, T.; Imahori, H.
Chem. Sci. 2016, 7, 3331–3337.
DOI: 10.1039/c5sc04135j

[2] 金ナノロッドを用いた細胞膜局所加熱とTRPV1チャネルの光活性化

村上 達也
生物物理 2016, 56, 224–226.
DOI: 10.2142/biophys.56.224

[1] Polymer-coated pH-responsive high-density lipoproteins
Kim, H.; Okamoto, H.; Felber, A. E.; Polomska, A.; Morone, N.; Heuser, J. E.; Leroux, J.-C.; Murakami, T.
J. Controlled Release 2016, 228, 132–140.
DOI: http://dx.doi.org/10.1016/j.jconrel.2016.03.005

2015

[5] Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticles
Nakatsuji, H.; Numata, T.; Morone, N.; Kaneko, S.; Mori, Y.; Imahori, H.; Murakami, T.
Angew. Chem. Int. Ed. 2015, 54, 11725–11729.
DOI: 10.1002/anie.201505534

[4] Control of the photoluminescence properties of single-walled carbon nanotubes by alkylation and subsequent thermal treatment
Maeda,Y.; Takehara, Y.; Yamada, M.; Suzuki, M.; Murakami, T.
Chem. Commun. 2015, 51, 13462–13465.
DOI:10.1039/C5CC04020E

[3] Structural and Functional Changes in High-Density Lipoprotein Induced by Chemical Modification
Murakami, T.; Okamoto, H.; Kim, H.
Biomater. Sci. 2015, 3, 712–715.
DOI: 10.1039/c4bm00402g

[2] Cytotoxicity of pure nanodrugs of SN-38 and podophyllotoxin dimers in human cancer HepG2, KPL-4, and MCF-7 cells
Koseki, Y.; Ikuta, Y.; Murakami, T.; Onodera, T.; Oikawa, H.; Cong, L.; Tada, H; Gonda, K.; Ohuchi, N.; Kasai, H.
Mol. Cryst. Liq. Cryst. 2015, 62, 1–5.
DOI: 10.1080/15421406.2015.1096483

[1] Internalizaton of high-density lipoproteins bearing arginine-rich peptides
Murakami, T.; Kim, H.; Okamoto, H.
Chem. Lett. 2015, 44, 336–338.
DOI: 10.1246/cl.140989

2014

[4] Mesoscopic Metal Nanoparticles Doubly Functionalized with Natural and Engineered Lipidic Dispersants for Therapeutics
Murakami, T.; Nakatsuji, H.; Morone, N.; Heuser, J. E.; Ishidate, F.; Hashida, M.; Imahori, H.
ACS Nano 2014, 8, 7370–7376.
DOI: 10.1021/nn5024818
[3] Preparation of immunostimulatory single-walled carbon nanotube/CpG DNA complexes and evaluation of their potential in cancer immunotherapy
Zhou, S.; Hashida, Y.; Kawakami, S.; Mihara, J.; Umeyama, T.; Imahori, H.; Murakami, T.; Yamashita, F.; Hashida, M.
Int. J. Pharm. 2014, 471, 214–223.
[2] Photothermal ablation of tumor cells using a single-walled carbon nanotube–peptide composite.
Hashida, Y.; Tanaka, H.; Zhou, S.; Kawakami, S.; Yamashita, F.; Murakami, T.; Umeyama, T.; Imahori, H.; Hashida, M.
J. Controlled Release 2014, 173, 59–66.
[1] Gastrointestinal actions of orally-administered single-walled carbon nanohorns.
Nakamura, M.; Tahara, Y.; Murakami, T.; Iijima, S.; Yudasaka, M.
Carbon 2014, 69, 409–416.

2013

[6] Exclusive photothermal heat generation by a bis(naphthalocyanine) complex and inclusion into modified high-density lipoprotein nanocarriers for therapeutic applications.
Mathew, S.; Murakami, T.; Nakatsuji, H.; Okamoto, H.; Morone, N.; Heuser, J. E.; Hashida, M.; Imahori, H.
ACS Nano 2013, 7, 8908–8916.
[5] Fabrication of pure nanodrugs of podophyllotoxin dimer and their anticancer activity.
Ikuta, Y.; Koseki, Y.; Murakami, T.; Ueda, M.; Oikawa, H.; Kawai, H.
Chem. Lett. 2013, 42, 900–901.
[4] Helicity-selective photoreaction of single-walled carbon nanotubes with organosulfur compounds in the presence of oxygen.
Maeda, Y.; Higo, J.; Amagai, Y.; Matsui, J.; Ohkubo, K.; Yoshigoe, Y.; Hashimoto, M.; Eguchi, K.; Yamada, M.; Hasegawa, T.; Sato, Y.; Zhou, J.; Lu, J.; Miyashita, T.; Fukuzumi, S.; Murakami, T.; Tohji, K.; Nagase, S.; Akasaka, S.
J. Am. Chem. Soc. 2013, 135, 6356–6362.
[3] Carboxylated SiO2-coated a-Fe nanoparticles: towards a versatile platform for biomedical applications.
Kohara, K.; Yamamoto, S.; Seinberg, L.; Murakami, T.; Tsujimoto, M.; Ogawa, T.; Kurata, H.; Kageyama, H.; Takano, M.
Chem. Commun. 2013, 49, 2563–2565.
[2] Metallo-supramolecular polymers: versatile DNA binding and their cytotoxicity.
Jinghua, L.; Murakami, T.; Higuchi, M.
J. Inorg. Organomet. Polym. 2013, 23, 119–125.
[1] Mechanism of cell interactions with water-dispersed carbon nanohorns.
Murakami, T.; Nakatani, M.; Kokubo, M.; Nakatsuji, H.; Inada, M.; Imahori, H.; Yudasaka, M.; Iijima, S.; Tsuchida, K.
Nanosci. Nanotechnol. Lett. 2013, 5, 3, 402–407.

2012

[4] Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes.
Murakami, T.; Nakatsuji, H.; Inada, M.; Matoba, Y.; Umeyama, T.; Tsujimoto, M.; Isoda, S.; Hashida, M.; Imahori, H.
J. Am. Chem. Soc. 2012, 134, 17862–17865.
DOI: 10.1021/ja3079972
[3] Phospholipid nanodisc engineering for drug delivery systems
Murakami, T.
Biotechnol. J. 2012, 7, 762–767.
[2] Creation of pure nanodrugs and their anticancer properties.
Kasai, H.; Murakami, T.; Ikuta, Y.; Koseki, Y.; Baba, K.; Oikawa, H.; Nakanishi, H.; Okada, M.; Shoji, M.; Ueda, M., Imahori, H., Hashida, M.
Angew. Chem. Int. Ed. 2012, 51, 10315–10318.
[1] Utilization of photoinduced charge-separated state of donor-acceptor-linked molecules for regulation of cell membrane potential and ion transport.
Numata, T.; Murakami, T.; Kawashima, F.; Morone, N.; Heuser, J. E.; Takano, Y.; Ohkubo, K.; Fukuzumi, S.; Mori, Y.; Imahori, H.
J. Am. Chem. Soc. 2012, 134, 6092–6095.

2011

[3] Creation of novel signalling modulators from existing cytokine using scanning motif-programming.
Murakami, T.; Kashiwagi, K.; Shiba, K.
Chem. Commun. 2011, 47, 9357– 9359.
[2] Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and antiinflammatory effects on arthritis.
Nakamura, M.; Tahara, Y.; Ikehara, Y.; Murakami, T.
Nanotechnology 2011, 22, 465102.
[1] Incorporation of organimetallic Ru complexes into apo-ferritin cage.
Takezawa, Y.; Bockmann, P.; Sugi, N.; Wang, Z.; Abe, S.; Murakami, T.
Dalton Trans. 2011, 40, 2190–2195.

2010

[2] Size control of lipidbased drug carriers by drug loading.
Murakami, T.; Tsuchida, K.; Hashida, M.; Imahori, H.
Mol. BioSyst. 2010, 6, 789–791.
[1] Intracellular drug delivery by genetically engineered high density lipoprotein nanoparticles.
Murakami, T.; Wijagkanalan, W.; Hashida, M.; Tsuchida, K.
Nanomedicine (London, U. K.) 2010, 5, 867–879.

2009

[2] Photoinduced electron transfer in Zinc phthalocyanine loaded on single-walled carbon nanohorns in aqueous solution.
Sandanayaka, A. S. D.; Ito, O.; Zhang, M.; Ajima, K.; Iijima, S.; Yudasaka, M.; Murakami, T.
Adv. Mater. 2009, 21, 1–6.
[1] Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with enbedded Gd2O3 labels.
Miyawaki, J.; Matsumura, S.; Yuge, R.; Murakami, T.
ACS Nano 2009, 3, 1399–1406.

2008

[7] Fabrication of ZnPc/ protein nanohorns for double photodynamic and hyperthermic cancer phototherapy.
Zhang, M.; Murakami, T.; Ajima, K.; Tsuchida, K.
Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14773–14778.
[6] Recent advances in inorganic nanoparticlebased drug delivery systems.
Murakami, T.; Tsuchida, K.
Mini-Rev. Med. Chem. 2008, 8, 175–183.
[5] Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy.
Murakami, T.; Sawada, H.; Tamura, G.; Yudasaka, M.
Nanomedicine (London, U. K.) 2008, 3, 453–463.
[4] Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice.
Nakatani, M.; Takehara, Y.; Sugino, H.; Matsumoto, M.; Hashimoto, O.; Hasegawa, Y.; Murakami, T.
FASEB J. 2008, 22, 477–487.
[3] Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns.
Ajima, K.; Murakami, T.; Mizoguchi, Y.; Tsuchida, K.
ACS Nano 2008, 2, 2057–2064.
[2] Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer.
Tsuchida, K.; Nakatani, M.; Uezumi, A.; Murakami, T.; Cui, X.
Endocrinol. J. 2008, 55, 11–21.
[1] Overexpression of the follistatin-related gene protein in the placenta and maternal serum of women with pre-eclampsia.
Pryor-Koishi, K.; Nishizawa, H.; Kato, T.; Kogo, H.; Murakami, T.; Tsuchida, K.; Kurahashi, H.; Udagawa, Y.
BJOG 2008, 114, 1128–1137.

2007

[1] Characterization of follistatin-related gene as a negative regulatory factor for activin family members during mouse heart development.
Takehara-Kusamatsu, Y.; Tsuchida, K.; Nakatani, M.; Murakami, T.
J. Med. Invest. 2007, 54, 276–288.

2006

[2] Solubilization of single-wall carbon nanohorns using a PEG-doxorubicin conjugate.
Murakami, T.; Fan, J.; Yudasaka, M.; Iijima, S.; Shiba, K.
Mol. Pharm. 2006, 3, 407–414.
[1] Inhibition of the TGF-・「 superfamily and their clinical applications.
Tsuchida, K.; Sunada, Y.; Noji, S.; Murakami, T.; Uezumi, A.; Nakatani, M.
Mini-Rev. Med. Chem. 2006, 6, 1255–1261.

2005

[1] Carbon nanohorns as anticancer drug carriers.
Ajima, K.; Yudasaka, M.; Murakami, T.; Maigne, A.
Mol. Pharm. 2005, 2, 475–480.

2004

[3] Novel factors in regulation of activin signaling.
Tsuchida, K.; Nakatani, M.; Matsuzaki, T.; Yamakawa, N.; Liu, Z.-H.; Bao, Y.-L.; Arai, K. Y.; Murakami, T.
Mol. Cell. Endocrinol. 2004, 225, 1–8.
[2] Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro.
Murakami, T.; Ajima, K.; Miyawaki, J.; Yudasaka, M.
Mol. Pharm. 2004, 1, 399–405.
[1] Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins.
Miyamoto, H.; Murakami, T.; Tsuchida, K.; Sugino, H.
Pancreas 2004, 28, 38–44.

1999

[1] Effects of the arrangement of a distal catalytic residue on regioselectivity and reactivity in the coupled oxidatioin of sperm whale myoglobin mutants.
Murakami, T.; Morishima, I.; Matsui, T.; Ozaki, S.-I.
J. Am. Chem. Soc. 1999, 121, 2007–2011.

1998

[3] A new active intermediate in monooxygenations catalyzed by iron porphyrin complexes.
Murakami, T.; Yamaguchi, K.; Watanabe, Y.; Morishima, I.
Bull. Chem. Soc. Jpn. 1998, 71, 1343–1353.
[2] A novel meso-oxygenation of an iron porphyrin complex related to meso-hydroxylation catalyzed by heme oxygenase.
Murakami, T.; Watanabe, Y.; Morishima, I.
Chem. Lett. 1998, 27–28.
[1] Effects of the arrangement of a distal histidine on regioselectivity of the coupled oxidation of sperm whale myoglobin mutants.
Murakami, T.; Morishima, I., T., M.; Ozaki, S.-I.; Watanabe, Y.
Chem. Commun. 1998, 773–774.

 

pagetop