富山県立大学工学部 バイオ医薬品工学講座 長井研究室

研究業績Achivement

原著論文

2024年

  1. Impact of liver macrophages, gut microbiota, and bile acid metabolism on the differences in iHFC diet-induced MASH progression between TSNO and TSOD mice.
    Igarashi N, Kasai K, Tada Y, Kani K, Kato M, Takano S, Goto K, Matsuura Y, Ichimura-Shimizu M, Watanabe S, Tsuneyama K, Furusawa Y, Nagai Y.
    Inflamm Res.2024 Apr. 15. doi: 10.1007/s00011-024-01884-7.
    https://pubmed.ncbi.nlm.nih.gov/38619583/
  2. Isoliquiritigenin inhibits NLRP3 inflammasome activation with CAPS mutations by suppressing caspase-1 activation and mutated NLRP3 aggregation.
    Usui-Kawanishi K, Kani K, Karasawa T, Honda H, Takayama N, Takahashi M, Takatsu K, Nagai Y.
    Genes to Cells.2024; 1-9. https://doi.org/10.1111/gtc.13108
    https://pubmed.ncbi.nlm.nih.gov/38366709/

2023年

  1. Dynamics of Liver Macrophage Subsets in a Novel Mouse Model of Non-Alcoholic Steatohepatitis Using C57BL/6 Mice.
    Makiuchi N, Takano S, Tada Y, Kasai K, Igarashi N, Kani K, Kato M, Goto K, Matsuura Y, Ichimura-Shimizu M, Furusawa Y, Tsuneyama K, Nagai Y.
    Biomedicines.2023, 11(10), 2659;
    https://www.mdpi.com/2227-9059/11/10/2659
  2. Isoxanthohumol improves obesity and glucose metabolism via inhibiting intestinal lipid absorption with a bloom of Akkermansia muciniphila in mice.
    Watanabe Y, Fujisaka S, Morinaga Y, Watanabe S, Nawaz A, Hatta H, Kado T, Nishimura A, Bilal M, Aslam MR, Honda K, Nakagawa Y, Softic S, Hirabayashi K, Nakagawa T,Nagai Y,Tobe K.
    Mol Metab.2023 Sep 12:101797. doi: 10.1016/j.molmet.2023.101797. Online ahead of print.
    https://pubmed.ncbi.nlm.nih.gov/37709134/
  3. High-density lipoprotein engineering for eye-drop treatment of age-related macular degeneration.
    Fukuda R, Mahmuda N, Kasirawat S, Kawakami R, Shima R, Mizukami Y, Shibukawa S, Tada Y, Kawanishi F, Ogura M, Matsuki K,Nagai Y,Nakano E, Suda K, Tsujikawa A, Murakami T.
    Advanced Therapeutics.First published: 07 August 2023. doi.org/10.1002/adtp.202300186
    https://onlinelibrary.wiley.com/doi/full/10.1002/adtp.202300186
  4. Effect of Oral Administration of Polyethylene Glycol 400 on Gut Microbiota Composition and Diet-Induced Obesity in Mice.
    Ishibashi R, Matsuhisa R, Nomoto M, Chudan S, Nishikawa M, Tabuchi Y, Ikushiro S, Nagai Y, Furusawa Y.
    Microorganisms.2023, 11(8), 1882; https://doi.org/10.3390/microorganisms11081882.
    https://www.mdpi.com/2076-2607/11/8/1882
  5. The innate immune receptor RP105 promotes metabolic syndrome by altering gut microbiota composition and intestinal barrier function.
    Kani K, Kasai K, Tada Y, Ishibashi R, Takano S, Igarashi N, Ichimura-Shimizu M, Tsuneyama K, Furusawa Y, Nagai Y.
    Biochem Biophys Res Commun.2023 Apr 26;664:77-85. doi: 10.1016/j.bbrc.2023.04.068.
    https://pubmed.ncbi.nlm.nih.gov/37146560/
  6. Effect of Wheat-Derived Arabinoxylan on the Gut Microbiota Composition and Colonic Regulatory T Cells.
    Chudan S, Ishibashi R, Nishikawa M, Tabuchi Y, Nagai Y, Ikushiro S, Furusawa Y.
    Molecules.2023 Mar 30;28(7):3079. doi: 10.3390/molecules28073079.
    https://pubmed.ncbi.nlm.nih.gov/37049841/
  7. Impact of Vancomycin Treatment and Gut Microbiota on Bile Acid Metabolism and the Development of Non-Alcoholic Steatohepatitis in Mice.
    Kasai K, Igarashi N, Tada Y, Kani K, Takano S, Yanagibashi T, Usui-Kawanishi F, Fujisaka S, Watanabe S, Ichimura-Shimizu M, Takatsu K, Tobe K, Tsuneyama K, Furusawa Y, Nagai Y.
    Int J Mol Sci.2023 Feb 17;24(4):4050. doi: 10.3390/ijms24044050.
    https://pubmed.ncbi.nlm.nih.gov/36835461/
  8. Effect of soluble oat fiber on intestinal microenvironment and TNBS-induced colitis.
    Chudan S, Ishibashi R, Nishikawa M, Tabuchi Y, Nagai Y,Ikushiro S, Furusawa Y.
    Food Funct.2023 Feb 21;14(4):2188-2199. doi: 10.1039/d2fo03396h.
    https://pubmed.ncbi.nlm.nih.gov/36756938/

2022年

  1. Roles of Macrophages in Advanced Liver Fibrosis, Identified Using a Newly Established Mouse Model of Diet-Induced Non-Alcoholic Steatohepatitis.
    Tada Y, Kasai K, Makiuchi N, Igarashi N, Kani K, Takano S, Honda H, Yanagibashi T, Watanabe Y, Usui-Kawanishi F, Furusawa Y, Ichimura-Shimizu M, Tabuchi Y, Takatsu K, Tsuneyama K, Nagai Y.
    Int J Mol Sci .2022 Oct 31;23(21):13251. doi: 10.3390/ijms232113251.
    https://pubmed.ncbi.nlm.nih.gov/36362037/
  2. The Impact of Low-Viscosity Soluble Dietary Fibers on Intestinal Microenvironment and Experimental Colitis: A Possible Preventive Application of Alpha-Cyclodextrin in Intestinal Inflammation.
    Yamanouchi Y, Chudan S, Ishibashi R, Ohue-Kitano R, Nishikawa M, Tabuchi Y, Kimura I, Nagai Y. Ikushiro S, Furusawa Y.
    Mol Nutr Food Res .2022 Nov;66(22):e2200063. doi: 10.1002/mnfr.202200063. Epub 2022 Oct 1.
    https://pubmed.ncbi.nlm.nih.gov/36181445/
  3. Isoliquiritigenin Attenuates Adipose Tissue Inflammation and Metabolic Syndrome by Modifying Gut Bacteria Composition in Mice.
    Ishibashi R, Furusawa Y, Honda H, Watanabe Y, Fujisaka S, Nishikawa M, Ikushiro S, Kurihara S, Tabuchi Y, Tobe K, Takatsu K, Nagai Y.
    Mol Nutr Food Res .2022 May;66(10):e2101119. doi: 10.1002/mnfr.202101119. Epub 2022 Mar 28.
    https://pubmed.ncbi.nlm.nih.gov/35297188/
  4. Betulin Attenuates TGF-β1- and PGE2-Mediated Inhibition of NK Cell Activity to Suppress Tumor Progression and Metastasis in Mice.
    Ogasawara M, Yamasaki-Yashiki S, Hamada M, Yamaguchi-Miyamoto T, Kawasuji T, Honda H, Yanagibashi T, Ikutani M, Watanabe Y, Fujimoto R, Matsunaga T, Nakajima N, Nagai Y,Takatsu K.
    Biol Pharm Bull.2022;45(3):339-353. doi: 10.1248/bpb.b21-00921.
    https://pubmed.ncbi.nlm.nih.gov/35228400/

2021年

  1. Bone marrow transplantation into Abcd1-deficient mice: Distribution of donor derived-cells and biological characterization of the brain of the recipient mice.
    Morita M, Kaizawa T, Yoda T, Oyama T, Asakura R, Matsumoto S,Nagai Y,Watanabe Y, Watanabe S, Kobayashi H, Kawaguchi K, Yamamoto S, Shimozawa N, So T, Imanaka T.
    J Inherit Metab Dis.2021 May;44(3):718-727. doi: 10.1002/jimd.12346. Epub 2021 Jan 4.
    https://pubmed.ncbi.nlm.nih.gov/33332637/

2020年

  1. Bofutsushosan improves gut barrier function with a bloom of Akkermansia muciniphila and improves glucose metabolism in mice with diet-induced obesity.
    Fujisaka S, Usui I, Nawaz A, Igarashi Y, Okabe K, Furusawa Y, Watanabe S, Yamamoto S, Sasahara M, Watanabe Y,Nagai Y,Yagi K, Nakagawa T, Tobe K.
    Sci Rep.2020 Mar 26;10(1):5544. doi: 10.1038/s41598-020-62506-w.
    https://pubmed.ncbi.nlm.nih.gov/32218475/

2019年

  1. Bidirectional crosstalk between neutrophils and adipocytes promotes adipose tissue inflammation.
    Watanabe Y, Nagai Y,Honda H, Okamoto N, Yanagibashi T, Ogasawara M, Yamamoto S, Imamura R, Takasaki I, Hara H, Sasahara M, Arita M, Hida S, Taniguchi S, Suda T, Takatsu K.
    FASEB J.2019 Jul 29:fj201900477RR. doi: 10.1096/fj.201900477RR.
    https://www.ncbi.nlm.nih.gov/pubmed/31355683

2017年

  1. Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance.
    Wada T, Ishikawa A, Watanabe E, Nakamura Y, Aruga Y, Hasegawa H, Onogi Y, Honda H, Nagai Y, Takatsu K, Ishii Y, Sasahara M, Koya D, Tsuneki H, Sasaoka T.
    J. Endocrinol. 2017 Dec;235(3):179-191., pii: JOE-17-0351.
    https://www.ncbi.nlm.nih.gov/pubmed/28855315
  2. Funiculosin variants and phosphorylated derivatives promote innate immune responses via the Toll-like receptor 4/myeloid differentiation factor-2 complex.
    Okamoto N, Mizote K, Honda H, Saeki A, Watanabe Y, Yamaguchi-Miyamoto T, Fukui R, Tanimura N, Motoi Y, Akashi-Takamura S, Kato T, Fujishita S, Kimura T, Ohto U, Shimizu T, Hirokawa T, Miyake K, Fukase K, Fujimoto Y, Nagai Y, Takatsu K.
    J. Biol. Chem, 2017 Sep 15;292(37):15378-15394.
    https://www.ncbi.nlm.nih.gov/pubmed/28754693
  3. CD206+ M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors.
    Nawaz A, Aminuddin A, Kado T, Takikawa A, Yamamoto S, Tsuneyama K, Igarashi Y, Ikutani M, Nishida Y, Nagai Y, Takatsu K, Imura J, Sasahara M, Okazaki Y, Ueki K, Okamura T, Tokuyama K, Ando A, Matsumoto M, Mori H, Nakagawa T, Kobayashi N, Saeki K, Usui I, Fujisaka S, Tobe K.
    Nat. Commun. 2017 Aug 18;8(1):286.
    https://www.ncbi.nlm.nih.gov/pubmed/28819169
  4. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS.
    Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H, Koo B.N, Kita S, O’Donnell E, Osawa T, Takahashi H, Takano KI, Dohmoto M, Sugimori M, Usui I, Watanabe Y, Hatakeyama N, Iwamoto T, Komuro I, Takatsu K, Tobe K, Niida S, Matsuda N, Shibuya M, Sasahara M.
    Sci. Rep. 2017 Jun 20;7(1):3855.
    https://www.ncbi.nlm.nih.gov/pubmed/28634350
  5. Prolonged activation of IL-5-producing ILC2 causes pulmonary arterial hypertrophy.
    Ikutani M, Tsuneyama K, Kawaguchi M, Fukuoka J, Kudo F, Nakae S, Arita M, Nagai Y, Takaki S, Takatsu K.
    JCI Insight. 2017;2(7):e90721.
    https://www.ncbi.nlm.nih.gov/pubmed/28405615

2016年

  1. Fetal lymphoid progenitors become restricted to B-1 fates coincident with IL-7Rα expression.
    Iida R, Shinoda K, Hattori Y, Nagai Y, Takatsu K, Kouro T.
    PLoS ONE. Oct 28; 11(10):e0165676,2016.
  2. HIF-1α in myeloid cells promotes adipose tissue remodeling toward insulin resistance.
    Takikawa A, Mahmood A, Nawaz A, Kado T, Okabe K, Yamamoto S, Arif A, Senda S, Tsuneyama K, Ikutani M, Watanabe Y, Igarashi Y, Nagai Y, Takatsu K, Koizumi K, Imura J, Goda N, Sasahara M, Matsumoto M, Saeki K, Nakagawa T, Fujisaka S, Usui I, Tobe K.
    Diabetes. 65(12):3649-3659,2016.
  3. Inflammatory responses increase secretion of MD-1 protein.
    Jennings RT, Odkhuu E, Nakashima A, Morita N, Kobayashi T, Yamai I, Tanaka M, Suganami T, Haga S, Ozaki M, Watanabe Y, Nagai Y, Takatsu K, Kikuchi-Ueda T, Ichimonji I, Ogawa Y, Takagi H, Yamazaki T, Miyake K, Akashi-Takamura S.
    Int. Immunol. 28(10):503-512,2016.
  4. Isoliquiritigenin attenuates an inflammatory paracrine loop between adipocytes and macrophages and adipose tissue fibrosis through inhibition of innate immune responses.
    Watanabe Y, Nagai Y, Honda H, Okamoto N, Yamamoto S, Hamashima T, Ishii Y, Tanaka M, Suganami T, Sasahara M, Miyake K, Takatsu K.
    Sci. Rep. 6:Article number: 23097 (2016) doi: 10.1038/srep23097
  5. Glycyrrhetinic acid inhibits contact hypersensitivity induced by trichophytin via dectin-1.
    Nakamura T, Nishibu A, Yoshida N, Yasoshima M, Anzawa K, Watanabe Y, Nagai Y, Takatsu K, Ogawa K, Mochizuki T.
    Exp. Dermatol. 25(4):299-304,2016.
  6. Deletion of SIRT1 in myeloid cells impairs glucose metabolism with enhancing inflammatory response to adipose tissue hypoxia.
    Takikawa A, Usui I, Fujisaka S, Ikutani M, Senda S, Hattori S, Tsuneyama K, Koshimizu Y, Inoue R, Tanaka-Hayashi A, Nakagawa T, Nagai Y, Takatsu K, Sasaoka T, Mori H, Tobe K.
    Diabetology International. (Published online) DOI 10.1007/s13340-015-0213-3

2015年

  1. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes.
    Yamamoto S, Niida S, Azuma E, Yanagibashi T, Muramatsu M, Huang TT, Sagara H, Higaki S, Ikutani M, Nagai Y, Takatsu K, Miyazaki K, Hamashima T, Mori H, Matsuda N, Ishii Y, Sasahara M.
    Sci. Rep.5:Article number: 8505 (2015) doi: 10.1038/srep08505
  2. Increased production of intestinal immunoglobulins in Syntenin-1-deficient mice.
    Tamura K, Ikutani M, Yoshida T, Tanaka-Hayashi A, Yanagibashi T, Inoue R, Nagai Y, Adachi Y, Miyawaki T, Takatsu K, Mori H.
    Immunobiology. 220(5):597-604,2015.
  3. Differential requirements of MyD88 and TRIF pathways in TLR4-mediated immune responses in murine B cells.
    Yanagibashi T, Nagai Y, Watanabe Y, Ikutani M, Hirai Y, Takatsu K.
    Immunol. Lett. 163(1):22-31,2015.

2014年

  1. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation.
    Honda H, Nagai Y, Matsunaga T, Okamoto N, Watanabe Y, Tsuneyama K, Hayashi H, Fujii I, Ikutani M, Hirai Y, Muraguchi A, Takatsu K.
    J. Leukoc. Biol. 96(6):1087-1100,2014.
  2. Deficiency of nicotinamide mononucleotide adenyltransferase 3 (nmnat3) causes hemolytic anemia by altering the glycolytic flow in mature erythrocytes.
    Hikosaka K, Ikutani M, Shito M, Kazuma K, Gulshan M, Nagai Y, Takatsu K, Konno K, Tobe K, Kanno H, Nakagawa T.
    J. Biol. Chem. 289(21):14796-14811,2014.

2013年

  1. Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in HIF-1 alpha-dependent and HIF-1 alpha-independent manner in obese mice.
    Fujisaka S, Usui I, Ikutani M, Aminuddin, Takikawa A, Tsuneyama K, Mahmood A, Goda N, Nagai Y, Takatsu K, Tobe K.
    Diabetologia. 56(6):1403-1412,2013.
  2. Inhibition of antibody production in vivo by pre-stimulation of Toll-like receptor 4 before antigen priming is caused by defective B cell priming and not impairement in antigen presentation.
    Rachmawati NM, Fukudome K, Tsuneyoshi N, Bahrun U, Tsukamoto H, Yanagibashi T, Nagai Y, Takatsu K, Ohta S, Kimoto M.
    Int. Immunol. 25(2):117-128,2013.
  3. Reduced surface expression of TLR4 by a V254I point mutation accounts for the low lipopolysaccharide responder phenotype of BALB/c B cells.
    Tsukamoto H, Fukudome K, Takao S, Tsuneyoshi N, Ohta S, Nagai Y, Ihara H, Miyake K, Ikeda Y, Kimoto M.
    J. Immunol. 190(1):195-204,2013.

2012年

  1. Glycyrrhizin and isoliquiritigenin suppress the LPS sensor toll-like receptor 4/MD-2 complex signaling in a different manner.
    Honda H, Nagai Y, Matsunaga T, Saitoh S, Akashi-Takamura S, Hayashi H, Fujii I, Miyake K, Muraguchi A, Takatsu K.
    J. Leukoc. Biol. 91(6):967-976,2012.
  2. Analysis of Trichophyton antigen-induced contact hypersensitivity in mouse.
    Nakamura T, Nishibu A, Yasoshima M, Tanoue C, Yoshida N, Hatta J, Miyamoto T, Nishii M, Yanagibashi T, Nagai Y, Takatsu K, Mochizuki T, Ogawa K.
    J. Dermatol. Sci. 66(2):144-153,2012.
  3. The Radioprotective 105/MD-1 complex contributes to diet-induced obesity and adipose tissue inflammation.
    Watanabe Y, Nakamura T, Ishikawa S, Fujisaka S, Usui I, Tsuneyama K, Ichihara Y, Wada T, Hirata Y, Suganami T, Izaki H, Akira S, Miyake K, Kanayama H, Shimabukuro M, Sata M, Sasaoka T, Ogawa Y, Tobe K, Takatsu K, Nagai Y.
    Diabetes. 61(5):1199-1209,2012.
  4. The RP105/MD-1 complex is indispensable for TLR4/MD-2-dependent proliferation and IgM-secreting plasma cell differentiation of marginal zone B cells.
    Nagai Y, Yanagibashi T, Watanabe Y, Ikutani M, Kariyone A, Ohta S, Hirai Y, Kimoto M, Miyake K, Takatsu K.
    Int. Immunol. 24(6):389-400,2012.
  5. Indentification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity.
    Ikutatni M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y, Kouro T, Itakura A, Nagai Y, Takaki S, Takatsu K.
    J. Immunol. 188(2):703-713,2012.
  6. Serum soluble MD-1 levels increase with disease progression in autoimmune prone MRL(lpr/lpr) mice.
    Sasaki S, Nagai Y, Yanagibashi T, Watanabe Y, Ikutani M, Kariyone A, Tsuneyama K, Hirai Y, Takatsu K.
    Mol. Immunol. 49(4):611-620,2012.

2011年以前

  1. Identification of FOXP3-negative regulatory T-like (CD4(+)CD25(+)CD127(low)) cells in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome.
    Otsubo K, Kanegane H, Kamachi Y, Kobayashi I, Tsuge I, Imaisumi M, Sasahara Y, Hayakawa A, Nozu K, Iijima K, Ito S, Horikawa R, Nagai Y, Takatsu K, Mori H, Ochs H, Miyawaki T.
    Clin. Immunol. 141(1):111-120,2011.  
  2. Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat fed mice.
    Fujisaka S, Usui I, Kanatani Y, Ikutani M, Takasaki I, Tsuneyama K, Tabuchi Y, Bukhari A, Yamazaki Y, Suzuki H, Senda S, Aminuddin A, Nagai Y, Takatsu K, Kobayashi M, Tobe K.
    Endocrinology. 152(5):1789-1799,2011.
  3. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice.
    Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, Tsuneyama K, Nagai Y, Takatsu K, Urakaze M, Kobayashi M, Tobe K.
    Diabetes. 58(11):2574-2682,2009.
  4. Toll-like receptor 7 cooperates with IL-4 in activated B cells through antigen receptor or CD38 and induces class switch recombination and IgG1 production.
    Tsukamoto Y, Nagai Y, Kariyone A, Shibata T, Kaisho T, Akira S, Miyake K, Takatsu K.
    Mol. Immunol. 46(7):1278-1288,2009.
  5. Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection.
    Welner RS, Pelayo R, Nagai Y, Garrett KP, Wuest TR, Carr DJ, Borqhesi LA, Farrar MA, Kincade PW.
    Blood. 112(9):3753-3761,2008.
  6. Tonic B cell activation by Radioprotective 105/MD-1 promotes disease progression in MRL/lpr mice.
    Kobayashi T, Takahashi K, Nagai Y, Shibata T, Otani M, Izui S, Akira S, Gotoh Y, Kiyono H, Miyake K.
    Int. Immunol. 20(7): 881-891,2008.
  7. A protein associated with Toll-like receptor 4 (PRAT4A) is required for TLR-dependent immune responses.
    Takahashi K, Shibata T, Akashi-Takamura S, Kiyokawa T, Wakabayashi Y, Tanimura N, Kobayashi T, Matsumoto F, Fukui R, Kouro T, Nagai Y, Takatsu K, Saitoh S-I, Miyake K.
    J. Exp. Med. 204(12): 2963-2976,2007.
  8. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment.
    Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K,  Kincade PW.
    Immunity. 24(6):801-812,2006.
  9. Tracing the first waves of lymphopoiesis in mice.
    Yokota T, J Huang, Tavian M, Nagai Y, Hirose J, Zuniga-Plucker JC, Peault B, Kincade PW.
    Development. 133(10):2041-2051,2006.
  10. NF-kappaB is dispensable for normal lymphocyte development in bone marrow but required for protection of progenitors from TNFalpha.
    Igarashi H, Baba Y, Nagai Y, Jimi E, Ghosh S, Kincade PW.
    Int. Immunol. 18(5):653-659,2006.
  11. Bone marrow lacks a transplantable progenitor for smooth muscle type alpha-actin expressing cells.
    Yokota T, Kawakami Y, Nagai Y, Ma JX, Tsai JY, Kincade PW, Sato S.
    Stem Cells. 24(1):13-22,2006.
  12. IL-6 blocks a discrete early step in lymphopoiesis.
    Maeda K, Baba Y, Nagai Y, Miyazaki K, Malykhin A, Nakamura K, Kincade PW, Sakaguchi N, Coggeshall KM.
    Blood. 106(3):879-885,2005.
  13. The radioprotective 105/MD-1 complex links TLR2 and TLR4/MD2 in antibody response to microbial membranes.
    Nagai Y, Kobayashi T, Motoi Y, Ishiguro K, Akashi S, Saitoh S, Kusumoto Y, Kaisho T, Akira S, Matsumoto M, Takatsu K, Miyake K.
    J. Immunol. 174(11):7043-7049,2005.
  14. Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling.
    Shinohara H, Inoue A, Toyama-Sorimachi N, Nagai Y, Yasuda T, Suzuki H, Horai R, Iwakura Y, Yamamoto T, Karasuyama H, Miyake K, Yamanashi Y.
    J. Exp. Med. 201(3):333-339,2005.
  15. Lipid A antagonist, lipid Ⅳa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization.
    Saitoh S, Akashi S, Yamada T, Tanimura N, Kobayashi M, Konno K, Matsumoto F, Fukase K, Kusumoto S, Nagai Y, Kusumoto Y, Kosugi A, Miyake K.
    Int. Immunol. 16(7):961-969,2004.
  16. Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than with MD-2 or CD14.
    Akashi S, Saitoh S, Wakabayashi Y, Kikuchi T, Takamura N, Nagai Y, Kusumoto Y, Fukase K, Kusumoto S, Adachi Y, Kosugi A, Miyake K.
    J. Exp. Med. 198(7):1035-1042,2003.
  17. CD19 regulates innate immunity by the toll-like receptor RP105 signaling in B lymphocytes.
    Yazawa N, Fujimoto M, Sato S, Miyake K, Asano N, Nagai Y, Takeuchi O, Takeda K, Okochi H, Akira S, Tedder TF, Tamaki K.
    Blood. 102(4):1374-1380,2003.
  18. Essential role of MD-2 in B-cell responses to lipopolysaccharide and Toll-like receptor 4 distribution.
    Miyake K, Nagai Y, Akashi S, Nagafuku M, Ogata M, Kosugi A.
    J. Endotoxin Res. 8(6):449-452,2002.
  19. Essential role of MD-2 in LPS responsiveness and TLR4 distribution.
    Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K.
    Nat. Immunol. 3(7):667-672,2002.
  20. Requirement of MD-1 in cell surface expression of RP105/CD180 and B cell responsiveness to lipopolysaccahride.
    Nagai Y, Shimazu R, Ogata H, Akshi S, Sudo K, Yamasaki H, Hayashi S-I, Iwakura Y, Kimoto M, Miyake K.
    Blood. 99(5):1699-1705,2002.
  21. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition.
    Akashi S, Nagai Y, Ogata H, Oikawa M, Fukase K, Kusumoto S, Kawasaki K, Nishijima M, Hayashi S, Kimoto M, Miyake K.
    Int. Immunol. 13(12):1595-1599,2001.
  22. Regulatory roles for CD14 and phosphatidylinositol in the signaling via toll-like receptor4-MD-2.
    Akashi S, Ogata H, Kirikae F, Kirikae T, Kawasaki K, Nishijima M, Shimazu R, Nagai Y, Fukudome K, Kimoto M, Miyake K.
    Biochem. Biophys. Res. Commu. 268(1):172-177,2000.
  23. Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor4-MD-2 complex on mouse peritoneal macrophages.
    Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Kimoto M, Miyake K.
    J. Immunol. 164(7):3471-3475,2000.
  24. The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells.
    Ogata H, Su I, Miyake K, Nagai Y, Akashi S, Mecklenbrauker I, Rajewsky K, Kimoto M, Tarakhovsky A.
    J. Exp. Med. 192(1):23-29,2000.
  25. MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor4.
    Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M.
    J. Exp. Med. 189(11):1-6,1999.
  26. Differences in immune functions between human T-lymphotropic virus type 1 carriers and patients with adult T-cell leukemia/lymphoma.
    Funai N, Shimamoto Y, Yoshida S, Nagai Y, Nakazato S, Kohashi O.
    Clin. Immunol. Immunopathol. 80:325-332,1996.

著書・総説

著書

  1. Nagai Y,Watanabe Y, Honda H, Takatsu K:Chapter 8 Isoliquiritigenin: A unique licorice component that attenuates adipose tissue inflammation and fibrosis by targeting the innate immune sensors. In “Biological activities and action mechanisms of licorice ingredients” (ed. H. Sakagami), InTech, Zagreb, 2017, pp. 121-134(ISBN 978-953-51-3119-9).
  2. 宮本朋美,長井良憲,髙津聖志:第3章 6.5天然物由来アジュバント.次世代アジュバント開発のためのメカニズム解明と安全性評価(石井健監修).株式会社シーエムシー出版,東京,2017.
  3. Nagai Y,Honda H,Watanabe Y, Takatsu K:Chapter 30 Potential therapeutic natural products for the treatment of obesity-associated inflammation by targeting TLRs and inflammasomes. In “Chronic Inflammation –Mechanisms and Regulation-” (ed. M. Miyasaka and K. Takatsu), Springer Japan, Tokyo, 2016, pp. 379-397(ISBN 978-4-431-56068-5).
  4. 長井良憲,渡邉康春,髙津聖志:第4章 13節 RP105.Seriesモデル動物利用マニュアル 疾患モデルの作製と利用—脂質代謝異常と関連疾患 下巻(尾池雄一,佐々木雄彦,村上誠,矢作直也 編).株式会社エル・アイ・シー,東京,2015,133-142頁.
  5. Nagai Y,Takatsu K:Section 2. Part E.26:Role of the immune system in obesity-associated inflammation and insulin resistance. In Nutrition in the Prevention and Treatment of Abdominal Obesity(ed. RR. Watson).Elsevier/Academic Press,New York,2014,pp. 281-293.
  6. 本田裕恵,長井良憲,髙津聖志:植物由来成分によるTLR4/MD-2シグナルの抑制.エンドトキシン・自然免疫研究17 エンドトキシン・自然免疫の展開:新しい機序,診断,応用(谷徹,横地高志 編).医学図書出版株式会社,東京,2014,80-85頁.
  7. 長井良憲,髙津聖志:第4項 IL-5.Seriesモデル動物利用マニュアル 疾患モデルの作製と利用—免疫疾患(岩倉洋一郎 編).株式会社エル・アイ・シー,東京,2011,240-243頁.
  8. 長井良憲,髙津聖志:インターロイキン,インターロイキン受容体.分子細胞生物学辞典(村松正實 他編).第2版,東京化学同人,東京,2008,96-97頁.
  9. 長井良憲,髙津聖志:免疫とは.臨床アレルギー学 アレルギー専門医研修のために(宮本昭正 監修).改訂第3版,南江堂,東京,2007,2-4頁.

英文総説

  1. Allergic diseases: From bench to clinic - Contribution of the discovery of interleukin-5.
    Yanagibashi T, Satoh M, Nagai Y, Koike M, Takatsu K.
    Cytokine, 98:59-70, 2017.
    https://www.ncbi.nlm.nih.gov/pubmed/28863833
  2. The TLR family protein RP105/MD-1 complex: A new player in obesity and adipose tissue inflammation.
    Nagai Y, Watanabe Y, Takatsu K.
    Adipocyte. 2(2) :61-66, 2013.
    http://www.ncbi.nlm.nih.gov/pubmed/23805400
  3. Activation and regulation of the pattern recognition receptors in obesity-induced adipose tissue inflammation and insulin resistance.
    Watanabe Y, Nagai Y, Takatsu K.
    Nutrients. 5(9): 3757-3778, 2013.
    http://www.ncbi.nlm.nih.gov/pubmed/24064574
  4. Interleukin 5 in the link between the innate and acquired immune response.
    Takatsu K, Kouro T, Nagai Y.
    Adv. Immunol., 101, 191-236, 2009.
    https://www.ncbi.nlm.nih.gov/pubmed/19231596
  5. Life before the pre-B cell receptor checkpoint: specification and commitment of primitive lymphoid progenitors in adult bone marrow.
    Pelayo R, Welner RS, Nagai Y, Kincade PW.
    Semin. Immunol. 18(1), 2-11, 2006.
    https://www.ncbi.nlm.nih.gov/pubmed/16310376
  6. Innate recognition of lipopolysaccharide by Toll-like receptor 4/MD-2 and RP105/MD-1.
    Miyake K, Ogata H, Nagai Y, Akashi S, Kimoto M.
    J. Endotoxin Res. 6(5), 389-391,2000.
    https://www.ncbi.nlm.nih.gov/pubmed/11521060

日本語総説

  1. 渡邉康春,長井良憲,髙津聖志:肥満に伴う内臓脂肪組織炎症とメタボリック症候群における好中球の役割.臨床免疫・アレルギー科,2018.
  2. 長井良憲,髙津聖志:自然免疫系センサーによる炎症性マクロファージの制御と天然薬物による炎症調節.医学のあゆみ,257, 613-619, 2016.
  3. 長井良憲,渡邉康春,髙津聖志:自然免疫系センサーによる慢性炎症制御とメタボリック症候群.別冊BIO Clinica慢性炎症と疾患「慢性炎症制御による加齢関連疾患治療の展望」第4巻第2号,67-72, 2015.
  4. 長井良憲,渡邉康春,髙津聖志:自然免疫系受容体RP105/MD-1によるメタボリック症候群の制御.内分泌・糖尿病・代謝内科,37, 610-616, 2013.
  5. 長井良憲:アジュバントと自然免疫制御 新たな展開と疾患の制御.ファルマシア,46, 61-65, 2010.
  6. 長井良憲,髙津聖志:IL-5と好酸球で誘導されるアレルギー性炎症.実験医学増刊「アレルギー疾患の免疫機構」,27, 107-113, 2009.
  7. 長井良憲,塚本裕美子,髙津聖志:TLRシグナルとクラススイッチ組換え.臨床免疫・アレルギー科,49, 246-251, 2008.
  8. 長井良憲:自然免疫系細胞への分化におけるTLRの役割.臨床免疫・アレルギー科,47, 610-618, 2007.
  9. 小林真紀子,長井良憲,三宅健介:LPS応答性におけるMD-2の役割.臨床免疫,39, 453-458, 2003.
  10. 長井良憲,三宅健介:MD分子によるLPS認識機構.Molecular Medicine 臨時増刊号,39, 126-134, 2002.
  11. 長井良憲,三宅健介:エンドトキシン認識におけるToll-like receptor,RP105,MD蛋白の役割.アレルギー科,252-259, 2002.
  12. 長井良憲,三宅健介:LPS認識におけるToll-like receptorとMD蛋白の役割.炎症と免疫,9, 558-564, 2001.
  13. 長井良憲,三宅健介:Tollファミリー分子によるエンドトキシン(LPS)の認識,シグナル伝達.医学のあゆみ,194, 480-485, 2000.
  14. 長井良憲,三宅健介:病原体認識におけるTollファミリー分子とRP105の役割.医学のあゆみ,192, 794-795, 2000.

学会発表

※準備中です。

Page Top