若手エンジニア ステップアップセミナー

機械系コース

メインテーマ

ものづくりの理論と現場 (その② 材料・加工)

2 年間を通して、機械工学全体にわたる基礎を 習得します。

- ●状況によりオンライン講義となる場合があ ります。その際は、インターネットにつなが るパソコンをご用意ください。口頭での質 問には、Webマイクが必要になります。
- TeamsまたはZoomを使用します。

[受講料] 20,000円(税込)

(研究協力会会員は10.000円)

[開講時間] 18:00 ~ 20:00

■受講者に求められるレベル

20~30代がメイン、ただし、20~30代以外 でも受講可能。企業の技術者で業務に必要な知 識を身につけたい方。

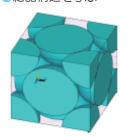
カリ ュ の

機械系コースは、①熱・流体・振動、②材料・加工、の二つの分野 を1年ごとに行う形で構成されており、①②を"2年間通して"受 講することで、機械工学全体にわたる基礎を学ぶことができます。 今年度は、②材料・加工の分野について、まず、材料の構造と特性 を概説し、次に力学特性を学び、それを踏まえて機能発揮のため の最適な加工を施す、という流れで講義を進めます。さらに、強度 設計に必要な破損理論について学び、環境調和型ものづくりに有 効なライフサイクルアセスメント(LCA)についても学習します。

カリキュラム

	NOTE OF THE PROPERTY OF THE PR					
	月月日	テーマ	内 容	キーワード	担当講師	場所
	I I	自己紹介	 	I I	全担当教員	ı
	1 10月7日 (水)	材料学1	材料の内部構造を理解し、機械設計における最適な材料選択のための基礎知識を得るとともに、状態図を使った材料設計の演習にも取り組みます(電卓必携)。	金属、セラミックス、高分子、 材料の構造と組織、 合金状態図	機械システム工学科 棚橋 満 准教授	L-204
	2 10月14	时 材料学 2	材料の内部構造と弾性変形、粘弾性、塑性変形との関係について学びます。 材料学に関する質疑応答	弾性と塑性、 工業材料の性質と機能	機械システム工学科 真田 和昭 教授 機械システム工学科 「材料学」 担当教員	L-204
_	1 11	1	i e e e e e e e e e e e e e e e e e e e	7175 45 45		
;	3 10月21 (水)	材料力学1	材料力学の役割を概説し、外力が作用する構造部材の引張り・圧縮・せん断により発生する応力やひずみについて学習し、棒などの部材の伸びや変形などについて学びます。	引張応力、 圧縮応力、 ひずみ	機械システム工学科 木下 貴博 講師	L-204
•	4 10月28 (水)	日 材料力学2	外力が作用するはりを対象にして、発生する応力やひ ずみについて学習し、はりなどの部材の曲げ応力やた わみ等について学びます。	せん断力図 SFD、 曲げモーメント図 BMD	機械システム工学科 木下 貴博 講師	L-204
	5 11月4日	材料力学3	強度設計に必要な材料の破損理論について学び、安全 性と信頼性の向上を目指します。	¦破壞、 ¦強度	機械システム工学科 堀川 教世 教授	L-204
(6 11月11	材料力学 4	破損理論の計算に必要な主応力を実験で求める方法と してロゼット解析があります。ここでは実験を行いロ ゼット解析の手順や計算を学びます。 材料力学に関する質疑応答	破壊、	機械システム工学科 堀川 教世 教授 機械システム工学科「材料力学」担当教員	L-204
	7 11月18 _(水)	^日 塑性加工学	金属材料の基本的な塑性加工技術の原理・基礎を中 心に講義をします。また、近年の微細加工・精密加工 技術を紹介します。	塑性加工、 微細加工	機械システム工学科 鈴木 真由美 教授	L-204
8	g 11月25	溶接・接合および 日 摩擦・摩耗	部材の組立における溶接・接合技術および材料の 摩擦・摩耗について学びます。	溶接、接合、 摩擦、摩耗	機械システム工学科 伊藤 勉 准教授 宮島 敏郎 准教授	L-204
	(水)		加工、溶接・接合、摩擦・摩耗に関する質疑応答	1	機械システム工学科「加工、溶接・接合、摩擦・摩耗」 担当教員	
	9 12月2	LCA 工学	LCAの基礎であるインベントリ分析、影響評価等について学び、これに関する演習を行います(電卓必携)。	LCA、 環境	機械システム工学科 森 孝男 特任教授	L-204
10	0 12月9	タイヤの 材料開発	【外部講師によるオンライン講演】 タイヤの構造やゴム材料の基礎を概説し、自動車の安 全と低燃費化の両立を見据えた要求特性や材料開発 の考え方、開発事例を紹介します。	タイヤ、 ゴム、 粘弾性	[外部講師] 棚プリヂストン 山田 浩 氏	L-204
		1	コース全体に関する質疑応答・ディスカッション	I I	全担当教員	i i

●機械系コースは、①熱・流体・振動、②材料・加工、の二つの分野を1年ごとに行う形で構成されています。 次年度は、①熱・流体・振動 分野を開講予定です。 2年間通しての受講をお勧めします。


コース概要

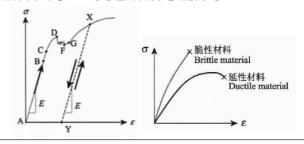
機械系コース

講義・演習

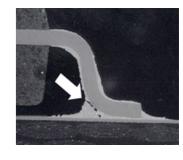
材料学

●結晶構造を学ぶ

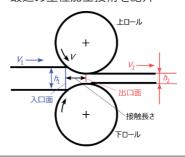
●組織と力学特性の関連性も説明



●適材適所に材料選択できる 基礎知識を得る


材料力学

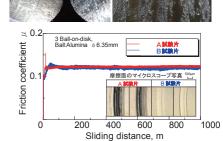
●材料に生じる応力とひずみの関係を学び、 熱応力やはりに生じる曲げ応力を理解する


●強度設計に必要な材料の破損理論を学び、

安全性・信頼性について考える

塑性加工学、溶接·接合、摩擦·摩耗

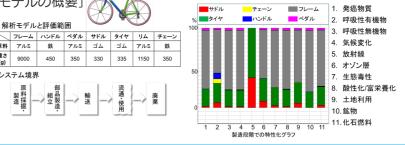
- 最近の高能率・高精度加工や 環境調和型加工の取組を紹介
- ●塑性加工の概要・基礎の確認や 最近の塑性加工技術を紹介


- ○溶融溶接・固相接合の基礎を確認
- 溶融溶接・固相接合の事例紹介
- ●最近のトピックを紹介

[モデルの概要]

解析モデルと評価範囲

様々な摩擦・摩耗の問題事例や、 低摩擦・耐摩耗の勘所について説明


LCA 丁学

●簡易自転車モデルを例に取り、LCA に よる環境負荷評価と、その応用について 理解する

左図: 自転車のライフサイクル、 右図:影響評価結果の一例

鉄 アルミ ゴム ゴム アルミ 鉄 450 350 330 335 1150 重さ (g) 9000

[影響評価]

